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A set of programs to calculate algebraically the generating functional (free energy) of a 
gauge system with arbitrary external sources on a lattice has been developed. It makes use of 
the strong coupling expansion. For theories with the standard Tr(UUUtUt) action results have 
been obtained up to fourth order. 

0. INTRODUCTION 

The project described in this paper is part of a program aimed at making explicit 
calculations in quantum chromodynamics. As described in [ 1,2] it uses the 
Euclidean version of the action on a four-dimensional lattice, where the generating 
functional for n-point functions turns into a free energy. The gauge fields are 
integrated out and the remaining integral is rewritten in terms of elementary meson 
and baryon fields. Thus we obtain an effective Lagrangian with arbitrary external 
sources. We can then proceed to calculate meson and baryon masses, couplings, and 
scattering amplitudes (e.g., pin coupling and 7crr scattering). Hadron masses as well 
as scattering amplitudes have been obtained in [ 1,2] in the strong coupling limit, 
l/g2 --t 0. The continuum limit lies at weak coupling, l/g* + 00. A way to reach this 
region is the strong coupling expansion of the free energy together with extrapolation 
schemes such as PadC approximation supplemented by information from the renor- 
malization group. 

In this paper we develop a method to calculate the higher order terms of the 
expansion of the free energy 

W(P,A,x)=log DUexp pCTrU,+CTr(~~U,+A,Ut) 
i I I 

(0.1) 
.P L 

in terms of the coupling parameter p = l/g*. In this expression L denotes a link, 9 
denotes a plaquette and Tr U, is the standard plaquette action defined in Section 1. 
Furthermore, A and 2 are arbitrary external sources for the gauge fields. In a later 
stage they will be replaced by bilinear combinations of fermion fields coming from 
the gauge field-fermion interaction and the resulting expression will be rewritten in 
terms of meson and baryon fields. 
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The coefficients in the strong coupling expansion will be expressed in terms of 
derivatives of the one link free energy 

W, = log 
I 

DU, exp tr(A, U, + A, Vi). 

These one-link integrals are known for a number of gauge groups [3,4]. 

(0.2) 

1. THE BASIC FORMULAE 

We start with some notation. Greek letters (,u, v,...) will be used to denote lattice 
directions and ar, a” will be used for unit lattice vectors in these directions. Lattice 
points are denoted by m, n,..., and links by L or explicitly (n, n + a“) or (n,~). For 
plaquettes (cf. Fig. 1) the generic letter 9 or the explicit expression (n, ,u, V) will be 
used. Thus (n,,~, v) denotes the oriented plaquette starting at lattice site n with 
directions ,u and v, i.e., (n, n + a”, n + a” + a”, n + a”). Then the total gauge action is 

where 

U cn,rc,uj = u(4 P) u(n + ap, v) U+(n + a”, cl) U+(n, v> (14 

and U(n,p) is the gauge matrix (U”b) sitting on link (n, n + aa) [5]. 
By abbreviating the measure nlinksL a’p,,,,(U,) to D[U] we may write the 

generating functional with sources A and 2 residing on links as 

Z(/.?,A,~)=,fD[U]exp /?xTr U,+xTr(zLU,+A,Ui) . 
I I 

(1.3) 
9 L 
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FIG. 1. A plaquette .P = (n, ,u, v) with a numbering of its links. The differentiation symbols are 
explained in the text. 
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This generating functional satisfies the equation 

(1.4) 

where Tr(6/6A),, denotes the following differentiation: 

6 
Tr = .P=(rl,$L,v) = ( i 

a a a a 
aAg(n,v) aA;(nw,pu) aA;(nt~yV) a&(n,,g 

. (1.5) 

We now substitute 

in (1.4), and make a strong coupling expansion for W 

Identification of equal powers of /3 in the left- and right-hand sides of (1.4) then leads 
to a recursion relation for the coefficients Wk. At this point we want to make a 
brief comment on the reason for using W directly. The recursion relation for W is 
highly nonlinear, in contrast with that for Z. Yet the way of making a strong coupling 
expansion for Z, 

Z(P, -4, X) = 2 /3kZ,(A, A), 
k=O 

(l-8) 

solving the linear recursion relation and finally taking the logarithm of Z to get W is 
no shortcut. The reason is that the coefficients Z, will involve multiple sums over 
lattice points, i.e., they have all kinds of disconnected contributions, whereas the W, 
will be seen in the next section to involve only one lattice sum, thus to have only 
connected contributions (this phenomenon is well known from standard weak 
coupling perturbation theory). 

To be able to give the recursion relation for W, in a concise form we make the 
abbreviations 

@ = a/aA;(n,v), 
(1.9) 

With these the recursion relation reads 

581/49/2-l 
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x %i w~,g; wmzg:wm3g: wk-m,-m,-m, * 
I 

(1.10) 

The lowest order contribution W,(A, x) is readily identified. For /? = 0 the 
contributions to Z(/?, A, 2) in (1.3) on different links decouple and Z becomes a 
product of one-link integrals, 

m-o-~=~ZO(4,~L)~ (l.lla) 
L 

(l.llb) 

Thus W,(A, 2) is only a sum over one-link contributions 

W,(A,J) = c F&A,), 
L 

(1.12a) 

F(AL, XL) = log &,(A,, A,). (1.12b) 

For SU(3) an expansion of F in terms of group invariants was computed in [4]. The 
next contribution W, contains only one term and reads 
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In the following sections we show how to implement the recursion relation as a set 
of computer algorithms. 

2. IMPLEMENTATION ON A COMPUTER 

Recursion relation (1.10) expresses W, as a sum over plaquettes of sums of 
products of functional derivatives of lower order contributions, which may seem to 
result in a very complex structure of the higher order terms. We shall show, however, 
that in each order there is only one generic sum over the lattice points and that the 
number of lattice directions to be summed over can be kept small. 

Concerning the first point, we shall show that W, has the form (in a very 
condensed notation) 

wk=c,DL C n G(n + bi, Vi)* (2.1) 

In (2.1) there is one summation over the lattice points n and there are summations 
. . . 

over lattice directions ,~r ,..., ,L, ; a finite number of different contributions is possible, 
labelled by M. The contributions consist of a numerical coefficient c: and a product 
of derivatives G of the one-link generating functional F (1.12b). The order of the 
derivatives are suppressed and so are the color indices. The link on which the 
variables in G sit is denoted by (n + bi, vi), where vi is one of the lattice directions 
p1 ,..., p, and b, a finite linear combination 

b = c djauj 
j=l 

P-2) 

of unit lattice vectors in these directions. 
Form (2.1) clearly holds for W, given in (1.13) and we shall now show it to hold 

for K+, if it does so for Wk. 
Form (2.1) for W, implies for the derivative of W, on link (m, A) that 

(2.3) 

The same form holds for aW&f(m, K) and for derivatives on the other links of 
plaquette (m, K, A) if one substitutes for m the corresponding point m, m + aK, or 
m + aA. Higher order derivatives also have form (2.3). Substituting this form for the 
derivatives into recursion relation (1.10) then leads to the same form (2.1) for W, + , . 
Thus in each order there is only one summation over the lattice points. This one 
summation can be suppressed altogether in the actual calculation. 

The next point one has to consider is the proliferation of lattice direction 
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summations. It is clear that in four-dimensional Euclidean space one can keep the 
number of summation directions down to at most four by using exclusive sums C’, 
where the summation runs over different directions only. The way these arise in the 
calculation and rules to manipulate them are given in the next section. From these 
rules and the structure of recursion relation (1.10) it will be shown there that any 
term in a W, for k # 0 has at least two such summation directions. 

In view.of manipulations with exclusive lattice direction sums, it turns out that the 
most efficient way to code the lattice vectors b in (2.1) is in terms of a variable basis 
au1 ,‘.‘, a”’ (2 & 1< 4) depending on the actual and exclusive directions p, ,..., ,u,, as 
was already indicated in expression (2.2). 

This completes the description of a term in W,, which thus has the generic form 

C: 2 n G(n + bi> Vi), 1<4, I>2 if k#O. (2.4) 
u,...,.PI i 

Functional differentiation of such a term amounts to the execution of elementary 
algebraic operations such as substitution of lattice direction indices, shifts of lattice 
vectors, and appending pairs of color indices. This makes implementation on a 
computer feasible. 

3. DETAILED STRUCTURE OF THE CALCULATION 

In this section we want to try to describe the calculation in such detail that, 
together with a manual on the operation of the programs that is presently being 
completed [6], the reader will be able to work with the results of the calculation or to 
redo or continue the calculation. For the first objective it is sufftcient to understand 
the internal structural unit, a so-called W-bank, corresponding to a term (2.4). We 
explain the structure of the W-bank and the operations one must perform on them to 
get the higher order terms (differentiation, recombination) and close the section with 
a discussion on the spatial structure of the W, terms, which provides us with bounds 
on some of the magnitudes occurring in the W-banks. 

Let us first dwell briefly on the role the plaquettes play. In the recursion relation a 
new summation over plaquettes is introduced with each step in k. Thus W, involves k 
such summations. As the result of differentiation and recombination they do not 
remain independent but are glued together. In the final result only the links on which 
the G’s reside are relevant. Nevertheless the plaquettes help a great deal to obtain 
insight into the spatial extension of terms and they will be used for that purpose later. 
Furthermore, they can be used as a code both for the color indices in a derivative G 
and for distinguishing between differentiations with respect to A or2. In order to 
make this possible, we keep the plaquettes as structural elements and number them 
(from 1 to k). Then the description of the derivatives G in terms of the one-link 
integrals F is done as follows: One of the elements of description is the link to which 
they belong. The other is a list of pairs (plaquette number, link number), where a pair 
(m,, g) has the following meaning (cf. Fig. 1): 
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(1) Link g of plaquette m,, is the same as the link on which this G resides. 

(2) For this g the type of derivative of F that has to be taken is defined in 
Fig. 1. 

Note that the color indices are implicit, but from the following example it will be 
clear that they can be uniquely assigned from the information available. As an 
example, let plaquette m, be (n, p, v) and the appended pair be (m,, 1). This means 
that the operation a/az@,p) has to be performed on F, where the upper color index 
a is the same as the lower color index on link 4 and the lower color index d is the 
same as the upper color index on link 2. 

In the above we still denoted a lattice point by n or n + b, but as in any stage of 
the computation there is at most one lattice point summation involved, we may delete 
the reference to “n.” Thus a point in storage is denoted by the lattice vector 6. As we 
use a variable basis (see (2.2)), b is specified by 2 to 4 coefficients. These coefficients 
are bounded by the maximum number of lattice steps between any 2 points occurring 
in the term, a number that is shown at the end of the section to be k + 1 for a term 
in W,. 

Examples of W-banks are given in Fig. 2. 
Let us now discuss the way exclusive summations arise and are treated. For k > 1 

a complete term in W, has exclusive lattice sums of the form 

(3-l) 

Term W, involves only the first of these and as in each new order two new exclusive 
lattice summations are introduced in the recursion relation, the total number can 
never drop below two, and can by definition never exceed four. These terms have to 
be differentiated and later recombined by way of the recursion relation. Before the 
recombination is effected the lattice directions of the new plaquette in this order are 
treated as external indices, let us call them a,@. To perform the differentiation we 
found it useful to write out the exclusive lattice sums in terms of sums C” that run 
only over indices that are mutually exclusive and different from a and/?. This can be 
done in the three cases that may arise by 

C’ f,” = f,Ll+ c” CL,, + fo, + fpa + f,o) + C” f,c 

(3.2b) 

(3.2~) 
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rLI.RM 1 WIT’H K-z I HAS 
c.j,;:,‘.fz :[[;-JE.jT :t AND 2 SUM. INlSICES 
PL 1 =( 01 O)r(lr2) 
G( :t ) := ( 0 I 0)$(l) r( 1v.t) 
G( 2)x( 0, o)*(2) I( lr4) 
G( 31-t 01 l)*(l) I( 1?3) 
G( 4 ) :z ( 1 I o)*(2) 9( 192) 

‘TERM i wIni K= 2 HAS 
COEFFICIENT 1 AND 2 SUM.INDICES 
PL 1 =( ov O)r(lr2) PL 2 =( 0, O)r(lr2) 
G( I)=( 0, o)*:(l) ,( l,l)r( 2rl) 
G( 2)=( 0, 0)$(Z) ,( lr4)r( 2r4) 
G( 3)=( 0, l)*(l) I( 1,3)r( 293) 
G( 4)=( lr o)*(2) ,( lr2)r( 2r21 

‘TERH 50 
COEFFICIENT 
PL 1 =( O? 
G( I)=( 01 
G( 2)=( 01 
G( 3)=( 01 
G( 4)=( 0, 
G( S)=( 01 
G( 6)=( lr 
G( 7)=( 1, 

TERN 32 
COEFFICIENT 
PL 1 =( 0, 
PL 3 =( 0, 
G( l)=( 0, 
G( 2)-( 0, 
G( 3)=( 01 
G( 4);=( 0, 
G( 5):=( 0, 
G( 6)=( Or 
G( 7)-C 01 
G( 13)x( 01 
G( Y)=( 09 
G( 10)-c lr 
G( 11):-C Ir 

WITH K= 2 HAS 
1 AND 3 SlJM.INDICES 

01 0),(1,2) PL 2 =( 0, or -1),(1,3) 
0, O)*:(l) v( lrl)r( 2~3) 
09 o)*(2) I( lr4) 
0, -l)*(l) I( 2tl) 
0, -l)*(3) 9( 294) 
lr o)*(l) I( lr3) 
09 o)*(2) I( 192) 
01 -l)*(3) I( 292) 

WITH K= 4 HAS 
6 AND 3 SUH.INDICES 

0, 0)9(1?2Z) 2 =( OI 0, -l)r(2r3) 
0, -1),(3,2) 

F:: 
4 =( 0, 1, O)r(112) 

0, o)*(l) 9( 1,l) 
0, O)*(2) I( lr4),( 2,3)r( 3~2) 
Or -l)*(2) ,( 2rl)r( 394) 
0~ -l)*(3) I( 294) 
01 -l)*(3) I( 3,l) 
lr O)*(l) v( lr3)r( 4rl) 
Ir O)*(2) PC 494) 
1, -l)*(3) v( 2r2)r( 393) 
21 0)$(l) v( 4*3) 
Or o)*(2) I( 192) 
1, O)*(2) ,( 4~2) 

FIG. 2. Sample terms from different Wk’s. A plaquette is denoted by PL and specified by a lattice 
vector (the first doublet or triplet) and two lattice directions. A derivative of a one-link integral is 
denoted by G, and specified by: a lattice vector, a lattice direction, and a number of pairs (plaquette 
number, link number). 

The first derivative then gets contributions from each term that contains the external 
index y involved in the derivative (y = a or /3) explicitly. The number of contributions 
is equal to the number of G’s occurring in that term, and in calculating the 
contribution associated with a specific G sitting on link (b, y) one has to shift all 
other lattice points b’ to b’ - b (or b’ - b + aK, K = a or /I), cf. (2.3). Higher order 
derivatives only get contributions associated with a specific G if the link of that G 
coincides with the link of the differentiation. 
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FIG. 3. Example of the way lower order terms (W, and IV,) are attached to a new plaquette so as to 
create a contribution to W,. 

To combine derivatives to a term of W k+ 1 by way of (1.10) one needs the rules to 
reduce a product of 2, 3, or 4 sums C” to a sum of exclusive sums. These rules are 
easily deduced by means of formulae of the type 

In this formula the explicit dependence off and g on a, /3 is suppressed. After all 
factors in the product forming a new term have been collected, a and /I become 
summation indices again, turning C,“, into C&Y and so on. 

We conclude this section with a discussion on the spatial structure of terms of W,. 
Differentiation of a W,, associated with a link of the new plaquette singles out one 
link of W,, and equates it to the link of the new plaquette as is illustrated in Fig. 3. 
Higher order derivatives couple still more links of W,, to the new plaquette (W, in 
Fig. 3). Thus the points of a term of W, form a structure that is built from k 
plaquettes connected by common links. 

The distance between two points in a term of W, is the minimum number of lattice 
steps between them. Let the maximum distance in W, be denoted by Mk. One can 
easily convince oneself from the above discussion that M, < Mk, + Mk,,, k’ + k” < 
k - 1. This implies, together with M, = 2, that Mk < k + 1. And as a linear chain of 
plaquettes satisfies this bound and gives rise to a possible term, Mk = k + 1. Thus a 
linear bound on the coefficients in the lattice vectors b is obtained. 
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TABLE I 

Number of Terms in W, 

Order k Number of terms 

0 1 
1 1 
2 54 
3 4561 
4 583492 

4. RESULTS 

Though the calculation of higher order terms is quite straightforward, both time 
and storage problems restrict pursuing the strong coupling series very far. 
Calculations have been performed on CDC machines of type 6400 and Cyber 173. 
The calculation of terms up to third order takes less than one CP-hour, but the fourth 
order takes a couple hundred CP-hours on the Cyber 173. This is a result of the 
explosive exponential increase in the number of terms in successive orders, as can be 
seen in Table I. The length of a term increases to 32 (60-bit) computer words in 
fourth order. The number of terms is understandable from the fact that order k 
involves k plaquettes and the resulting terms contain full spatial information. The 
amount of tape needed to store the results up to fourth order is somewhat more than 
a full (2400 foot) high density (6250 bpi) tape. 

The programs involved in the calculations are adapted to the 60-bit word length of 
the CDC machines. A manual is presently being drawn up [6]. 

The results at this stage are independent of the gauge group and so other one-link 
integrals may be substituted; e.g., Z, integrals have been used. 

As was mentioned in the Introduction, our first goal is to substitute the known 
expressions for the derivatives of the one-link integrals for SU(3) (and U(3)) in order 
to get the effective Lagrangian in terms of meson and baryon fields. This work is in 
progress. 
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